

Life Cycle Assessment of Underscreed U36 and U38

Maria Inês Santos

mariaines.santos@itecons.uc.pt

INSTITUTO DE INVESTIGAÇÃO E DESENVOLVIMENTO TECNOLÓGICO PARA A **CONSTRUÇÃO, ENERGIA, AMBIENTE E SUSTENTABILIDADE**

www.itecons.uc.pt

Introduction

LCA Methodology

Definition

Life cycle assessment (LCA) is a methodology that analyses input and output flows (mass and energy) during the life cycle (LC) of a product or service from cradle-tograve, so as to quantify and assess their potential environmental impacts.

Standards:

- ISO 14040:2006 Environmental management – Life cycle assessment – Principles and framework
- ISO 14044:2006 Environmental management – Life cycle assessment – Requirements and guidelines

Environmental Communication Tools itecons

Environmental Product Declaration

Verified and registered document that communicates transparent and comparable data and other relevant environmental information about the life-cycle environmental impact of a product

Based on the LCA methodology

ISO 14025; ISO 21930; EN 15804; EN 15942

Environmental Product Declaration

Type III

Prepared in accordance with Rules for the Product Category (PCR) – common for products with the same functions

Need to be verified by an independent third party (to be considered type III declarations)

Can be made available in an EPD system

Environmental Product Declaration

Benefits

- Valorization of products based on objective criteria
- Comparison of the environmental impact of products in the same product category
- Possible improvement of negative aspects and objective valorization of positive aspects
- Increased competitiveness of national products
- Elimination of possible export barriers in demanding markets

Product Description – U36 [6/3] and [8/4]

Components	% Weight	Materials	% Weight
	_		_
Dura		- 141	
Proc	auct compo	sition	
Confid	dential infor	rmation	

	Underscreed U36 [6/3]	Underscreed U36 [8/4]	Observations
Reference	U36 [6/3]	U36 [8/4]	
Dimensions (m x m)	1X10	1X10	
Thickness (mm)	6/3	8/4	
Weight (kg/m²)	2,16	2,76	
Weight- packed (kg/m²)	2,28	2,89	
Impact noise reduction ΔL _w (dB)	25	27	as per ISO 10140-3 and ISO 717-2
Impact insulation class IIC (dB)	53	53	as per ASTM E2179-03, ASTM E492-09, ASTM E989-18 and ASTM E2235-04
Specific Weight (kg/m³)	370-500		as per ASTMF1315 and ISO 7322
Tensile Strength (KPa)	≥200		as per ASTMF152 and ISO 7322
Cp level (mm)	<1		as per ISO 092/19 and ISO 7322
Thermal Conductivity (W/mK)	0,0751		as per ASTM D297
Fire Classification	E/Efl		as per EN 13501-1 and ISO 11925

8

Product Description – U38 [12/6] and [17/8]

	Components	% Weight	Materials	% Weight
	. .			
	Produ	uct composi	tion	
-	Confid	ential inform	nation	

	Underscreed U38 [12/6]	Underscreed U38 [17/8]	Observations
Reference	U38 [12/6]	U38 [17/8]	
Dimensions (m x m)	1X11	1X8	
Thickness (mm)	12/6	17/8	
Weight (kg/m²)	3,18	4,35	
Weight- packed (kg/m²)	3,33	3,39	
Impact noise reduction ΔL _w (dB)	29	31	as per ISO 10140-3 and ISO 717-2
Impact insulation class IIC (dB)	61	63	as per ASTM E2179-03, ASTM E492-09, ASTM E989-18 and ASTM E2235-04
Specific Weight (kg/m³)	274		as per ASTMF1315 and ISO 7322
Tensile Strength (KPa)	207		as per ASTMF152 and ISO 7322
Cp level (mm)	2		as per ISO 092/19 and ISO 7322
Thermal Conductivity (W/mK)	0,0546		as per ASTM D297
Fire Classification	E/Efl		as per EN 13501-1 and ISO 11925

itecons

Context and Objective of the LCA Study

Goals:

To determine the environmental impacts of the resilient acoustic Underscreeds – U36 [6/3], U36 [8/4] U38 [12/6] and U38 [17/8] produced by ACC in order to obtain EPD of these products on the basis of EN 15804:2012+A2:2019

Functional unit :

I m² of resilient acoustic underscreed installed during 50 years with unclassified sound absorption (packaging included)

System Boundaries

Product stage [A1-A3]:

Modules A1-A3 cover the extraction, production and acquisition of the main raw materials and pre-products, as well as electricity and fuel production. Transport of all raw materials considered in module A1 to the factory gate and production of the final products including waste and emissions.

Construction process stage [A4-A5]:

This study does not cover the construction process stage. Use stage [B1-B7]:

This study does not cover the use stage.

End of life stage [C1-C4]:

- Module C1

The demolition of Underscreeds is associated with the demolition of the building, so the contribution of the demolition of this type of product was considered not relevant.

System Boundaries

- <u>Module C2</u>

In the transport of the Underscreed U36 and U38 waste, it was considered that the waste operators are within a radius of 50 km.

- Module C3

It was considered that the residues of the system are not processed before their disposal.

- <u>Module C4</u>

At the end-of-life stage, a scenario of landfill (100 %) was considered, based on EUROSTAT 39/2019 report and primary information from the manufacturer.

Resource recovery stage [D]:

At present there are no processes for re-use or recovery and the potential benefits beyond the system boundaries (D) are therefore zero.

Main Assumptions

ACV cradle-to-gate with options:

- To model the inputs of raw materials and pre-products, their composition was considered according to technical and safety data sheets of the suppliers
- A percentage of additional material (by mass) was considered, in order to include losses in the production process
- To model transportation to the factory, the information about the type of transport and the location of the supplier was considered
- For energy production, the Portuguese energy grid mix of Ecoinvent v3.9.1 was used
- To account for energy consumption, counters, point measurements and estimates based on the quantities produced, were taken into consideration

Life cycle Impacts Assessment

Methods

Impact Category	Indicator	Unit
Climate change – total	GWP T	kg CO₂ eq.
Climate change – fossil	GWP F	kg CO ₂ eq.
Climate change – biogenic	GWP B	kg CO ₂ eq.
Climate change – land use and land use change	GWP L	kg CO₂ eq.
Ozone Depletion	ODP	kg CFC-11 eq.
Acidification	AP	mol H+ eq.
Eutrophication aquatic freshwater	EP Fw	kg P eq.
Eutrophication aquatic marine	EP M	kg N eq.
Eutrophication terrestrial	EP T	mol N eq.
Photochemical ozone formation	POCP	kg NMVOC eq.
Depletion of abiotic resources – minerals and metals	ADP MM	kg Sb eq.
Depletion of abiotic resources – fossil fuels	ADPJF	MJ
Water use	WDP	m ³ world eq. deprived

Database: Ecoinvent v3.9.1 and EF Database v2.0

Software: SimaPro v9.5

- Cradle-to-gate | For Inventory Element

Inventory elements that most contribute to the environmental impact are:

- Binder (48.8 58.7% of GWP|T, 41.7 – 47.1% of GWP|F, 78.0 – 78.7% of ODP, 59.9 – 60.0% of AP, 77.5 – 79.2% of EP|Fw, 58.9 – 60.7% of EP|M, 47.3 – 48.8% of EP|T, 53.2 – 54.0 of POCP, 99.0% of ADP|MM, 69.4 – 70.9% of ADP|F and 80.2 – 80.7% of WDP)
- Electricity (52.5 55.7% of GWP|L)
- Transport
- Waste and emissions

GWP|B: Cork Falca 2/4 (as a benefit), since the cork oak stores CO₂ during the photosynthesis process

- Cradle-to-gate with options
- Product stage [A1-A3] has the highest impact
- GWP B: Disposal [C4] has a significant contribution due to the release of CO₂ sequestered in the product
- EP|M: [C4] has a significant contribution

Cradle-to-gate | GWP <u>U36 [6/3]</u>

<u>U36 [8/4]</u>

Carbon Balance

<u>U36 [6/3]</u>

	1 m2 U36 [6/3] - cradle-to-gate			
	Forest carbonGHG emissionsCarbonuptake(cradle-to-gate)Bal		Carbon Balance	
Average uptake				
(using -55 t CO ₂ /t of	-10,13	2,27	-7,86	
cork extracted)				
Maximum uptake				
(using -73 t CO ₂ /t of	-13,45	2,27	-11,18	
cork extracted)				

<u>U36 [8/4]</u>

	1 m2 U36 [8/4] - cradle-to-gate			
	Forest carbon uptake	GHG emissions (cradle-to-gate)	Carbon Balance	
Average uptake (using -55 t CO ₂ /t of cork extracted)	-12,98	3,64	-9,34	
Maximum uptake (using -73 t CO ₂ /t of cork extracted)	-17,23	3,64	-13,59	

- Cradle-to-gate | For Inventory Element

Inventory elements that most contribute to the environmental impact are:

- Binder (74.6 74.7% of GWP|T, 63.5 – 64.8% of GWP|F, 85.5 – 88.7% of ODP, 77.6 – 78.3% of AP, 86.9% of EP|Fw, 80.9 – 81.1% of EP|M, 72.6 – 72.8% of EP|T, 74.3 – 74.8% of POCP, 99.5% of ADP|MM, 77.7 – 77.9% of ADP|F and 87.0 – 88.1% of WDP)
- Electricity (41.3 44.0% of GWP|L)
- Waste and emissions

GWP|B: Cork Falca 2/4 (as a benefit), since the cork oak stores CO₂ during the photosynthesis process

- Cradle-to-gate with options
- Product stage [A1-A3] has the highest impact
- GWP B: Disposal [C4] has a significant contribution - due to the release of CO₂ sequestered in the product
- EP|M: [C4] has a significant contribution

Cradle-to-gate | GWP <u>U38 [12/6]</u>

<u>U38 [17/8]</u>

23

Carbon Balance

<u>U38 [12/6]</u>

	1 m2 U38 [12/6] - cradle-to-gate			
	Forest carbon uptake	GHG emissions (cradle-to-gate)	Carbon Balance	
Average uptake				
(using -55 t CO ₂ /t of	-17,39	5,29	-12,10	
cork extracted)				
Maximum uptake				
(using -73 t CO ₂ /t of	-23,08	5,29	-17,79	
cork extracted)				

itecons

<u>U38 [17/8]</u>

	1 m2 U38 [17/8] - cradle-to-gate			
	Forest carbonGHG emissionsCarbonuptake(cradle-to-gate)Balance			
Average uptake				
(using -55 t CO ₂ /t of	-24,11	7,37	-16,74	
cork extracted)				
Maximum uptake				
(using -73 t CO ₂ /t of	-32,00	7,37	-24,63	
cork extracted)				

Conclusions

With this study it was concluded that:

- Cork used in the production of Underscreeds U36 [6/3], U36 [8/4], U38 [12/6] U38 [17/8] contributes with a negative impact (benefit) to GWP (-0.32, -0.41, -0.55 and -0.76 kg CO₂ eq., respectively), due to the storage of carbon throughout its life cycle, until its final disposal;
- The inventory elements that most contribute to the environmental impact of the Underscreeds U36 and U38 in study are binder, electricity, transport and waste and emissions;
- The product stage [A1-A3] has the highest impact for Underscreeds U36 and U38 and for all categories.